Помогите Я ** уроке не мог решить хочу узнать как это решается система...

0 голосов
28 просмотров

Помогите Я на уроке не мог решить хочу узнать как это решается
система уравнений
sinx+cosy=1/2
siny-cosx=1/2


Алгебра (142 баллов) | 28 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

\left \{ {{sin(x)+cos(y)=\frac{1}{2}} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\
 \left \{ {{sin(x)+cos(y)-[sin(y)-cos(x)]=\frac{1}{2}-\frac{1}{2}} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\
 \left \{ {{[sin(x)+cos(x)]-[sin(y)-cos(y)]=0} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\
 \left \{ {{\sqrt{2}sin(x+\frac{\pi}{4})-\sqrt{2}sin(y-\frac{\pi}{4})=0} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\

\left \{ {{sin(x+\frac{\pi}{4})-sin(y-\frac{\pi}{4})=0} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\ 
 \left \{ {{2sin(\frac{x-y}{2}+\frac{\pi}{4})*cos(\frac{x+y}{2})=0} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\ 
 \left \{ {{\frac{x-y}{2}+\frac{\pi}{4}=\pi n,\ n\in Z\ \ \ or\ \ \ \frac{x+y}{2}=\frac{\pi}{2}+\pi n,\ n\in Z} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\

\left \{ {{x-y=-\frac{\pi}{2}+2\pi n,\ n\in Z\ \ \ or\ \ \ x+y=\pi+2\pi n,\ n\in Z} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\ 
 \left \{ {{y=x+\frac{\pi}{2}-2\pi n,\ n\in Z\ \ \ or\ \ \ y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(y)-cos(x)=\frac{1}{2}}} \right. \\\\ 
 \left \{ {{y=x+\frac{\pi}{2}-2\pi n,\ n\in Z} \atop {sin[x+\frac{\pi}{2}-2\pi n]-cos(x)=\frac{1}{2}}} \right.\ or\ \left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(-x+\pi+2\pi n)-cos(x)=\frac{1}{2}}} \right. \\\\

\left \{ {{y=x+\frac{\pi}{2}-2\pi n,\ n\in Z} \atop {sin(\frac{\pi}{2}+x)-cos(x)=\frac{1}{2}}} \right.\ or\ \left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(\pi-x)-cos(x)=\frac{1}{2}}} \right. \\\\
 \left \{ {{y=x+\frac{\pi}{2}-2\pi n,\ n\in Z} \atop {cos(x)-cos(x)=\frac{1}{2}}} \right.\ or\ \left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(x)-cos(x)=\frac{1}{2}}} \right. \\\\
\left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(x)-cos(x)=\frac{1}{2}}} \right. \\\\

\left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {\sqrt{2}sin(x-\frac{\pi}{4})=\frac{1}{2}}} \right. \\\\
\left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {sin(x-\frac{\pi}{4})=\frac{1}{2\sqrt{2}}}} \right. \\\\
\left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {x-\frac{\pi}{4}=(-1)^k*arcsin(\frac{1}{2\sqrt{2}})+\pi k,\ k\in Z}} \right. \\\\
\left \{ {{y=-x+\pi+2\pi n,\ n\in Z} \atop {x=\frac{\pi}{4}+(-1)^k*arcsin(\frac{1}{2\sqrt{2}})+\pi k,\ k\in Z}} \right. \\\\

\left \{ {{y=-\frac{\pi}{4}-(-1)^k*arcsin(\frac{1}{2\sqrt{2}})-\pi k+\pi+2\pi n,\ n\in Z,\ k\in Z} \atop {x=\frac{\pi}{4}+(-1)^k*arcsin(\frac{1}{2\sqrt{2}})+\pi k,\ k\in Z}} \right. \\\\
\left \{ {{y=-\frac{\pi}{4}+(-1)^{k+1}*arcsin(\frac{1}{2\sqrt{2}})+\pi k+2\pi n,\ n\in Z,\ k\in Z} \atop {x=\frac{\pi}{4}+(-1)^k*arcsin(\frac{1}{2\sqrt{2}})+\pi k,\ k\in Z}} \right. \\\\
(8.6k баллов)