Косинус угла А при основании равен:
cos A = (6√3/2)/(5√3) = 3/5.
Находим тангенс половинного угла:
tg(A/2) = √((1-(3/5))/(1+(3/5))) = √(2/8) = √(1/4) = 1/2.
Проекция ОД высоты SД боковой грани с ребром основания 6√3 на основание равна:
ОД = (6√3/2)*tg(A/2) = 3√3*(1/2) = 1,5√3.
Отсюда получаем высоту Н пирамиды:
Н = 1,5√3*tg 60° = 1,5√3*√3 = 4,5.