Если в прямоугольной трапеции меньшая боковая сторона равна 12 см, меньшая диагональ...

0 голосов
62 просмотров

Если в прямоугольной трапеции меньшая боковая сторона равна 12 см, меньшая диагональ перпендикулярна большей боковой стороне и равна 15 см, чему равна длина большего основания


Геометрия (15 баллов) | 62 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Рассмотрим прям. трапецию АВСД, где L A=L B = 90⁰  и L АСД = 90⁰, тогда меньшая боковая строна АВ=12 см, меньшая диагональ АС = 15 см.

2) Из ΔАВС- прям.:ВС=√АС²-АВ²=√15²-12²=√(15-12)·(15+12)=√3·27=√81=9(см).

3) Дополнительное построение : СК перпендикуляр с АД .

   АВСК- прямоугольник, Δ СКД- прямоугольный.

4) Из Δ САД- прям.: АС=15, АК= 9, СК=12, тогда СК=√АК·КД

    (!!! В прямоугольном тр-ке высота, проведённая к гипотенузе равна кв.корню из произведения отрезков гипотенузы, на которые она разбивает её. )

   Тогда    12= √9·КД

                  9·КД= 144

                     КД=144:9=16(см), тогда АД= АК+КД=9+16=25(см).

Ответ: 25 см. 

 

 

(2.5k баллов)