В треугольнике ABC проведены высоты AN и BM и отмечена точка K – середина стороны AB....

0 голосов
108 просмотров

В треугольнике ABC проведены высоты AN и BM и отмечена точка K – середина стороны
AB. Найдите площадь треугольника MNK, если известно, что угол ACB равен 105, а длина AB равна 16.


Геометрия (51 баллов) | 108 просмотров
0

8*8*sin30/2=16

Дан 1 ответ
0 голосов
Правильный ответ

На основе свойства вписанного в окружность угла, опирающегося на диаметр, приходим к выводу, что точки M и N лежат на окружности, диаметр которой - сторона АВ. Радиус её равен 8 см.

Угол NBM равен 90° - (180° - 105°) = 15°. На дугу MN этого угла опирается центральный угол NKM, входящий в заданный треугольник.

Он равен 2*15° = 30°.

Отрезки KN и KM как радиусы равны по 8 см.

Получаем ответ: S = (1/2)*8*8*sin 30° = 32*(1/2) = 16 см².

(309k баллов)