В прямоугольном треугольнике катет, лежащий против угла 30°, равен половине гипотенузы. Пусть ВС = х, тогда АВ = 2х.
Найдем АС по теореме Пифагора:
(см)
Формула радиуса окружности, вписанной в прямоугольный треугольник:
, где а, b - катеты, с - гипотенуза. Отсюда:
![\cfrac{AC+BC-AB}{2}=\sqrt{3} \\\\ \cfrac{x\sqrt{3}+x-2x}{2}=\sqrt{3} \\ x\sqrt{3}-x=2\sqrt{3} \\\\ x(\sqrt{3}-1)=2\sqrt{3}\\\\ x=\cfrac{2\sqrt{3}}{\sqrt{3}-1} = \cfrac{2\sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \cfrac{6+2\sqrt{3}}{3-1} =\cfrac{2(3+\sqrt{3})}{2} =3+\sqrt{3} \cfrac{AC+BC-AB}{2}=\sqrt{3} \\\\ \cfrac{x\sqrt{3}+x-2x}{2}=\sqrt{3} \\ x\sqrt{3}-x=2\sqrt{3} \\\\ x(\sqrt{3}-1)=2\sqrt{3}\\\\ x=\cfrac{2\sqrt{3}}{\sqrt{3}-1} = \cfrac{2\sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \cfrac{6+2\sqrt{3}}{3-1} =\cfrac{2(3+\sqrt{3})}{2} =3+\sqrt{3}](https://tex.z-dn.net/?f=+%5Ccfrac%7BAC%2BBC-AB%7D%7B2%7D%3D%5Csqrt%7B3%7D+++%5C%5C%5C%5C+%5Ccfrac%7Bx%5Csqrt%7B3%7D%2Bx-2x%7D%7B2%7D%3D%5Csqrt%7B3%7D+%5C%5C+x%5Csqrt%7B3%7D-x%3D2%5Csqrt%7B3%7D+%5C%5C%5C%5C+x%28%5Csqrt%7B3%7D-1%29%3D2%5Csqrt%7B3%7D%5C%5C%5C%5C+++x%3D%5Ccfrac%7B2%5Csqrt%7B3%7D%7D%7B%5Csqrt%7B3%7D-1%7D+%3D++%5Ccfrac%7B2%5Csqrt%7B3%7D%28%5Csqrt%7B3%7D%2B1%29%7D%7B%28%5Csqrt%7B3%7D-1%29%28%5Csqrt%7B3%7D%2B1%29%7D+%3D++%5Ccfrac%7B6%2B2%5Csqrt%7B3%7D%7D%7B3-1%7D+%3D%5Ccfrac%7B2%283%2B%5Csqrt%7B3%7D%29%7D%7B2%7D+%3D3%2B%5Csqrt%7B3%7D++)
ВС = 3+√3 (cм)
АС = х√3 = (3+√3)√3 = 3√3 + 3 (см)
![S_{ABC}=\cfrac{1}{2} \cdot AC \cdot BC =\cfrac{(3\sqrt{3}+3)(3+\sqrt{3})}{2} = \cfrac{9\sqrt{3}+9+9+3\sqrt{3}}{2} = \\\\=\cfrac{12\sqrt{3}+18}{2} =\cfrac{2(6\sqrt{3}+9)}{2} =6\sqrt{3}+9 S_{ABC}=\cfrac{1}{2} \cdot AC \cdot BC =\cfrac{(3\sqrt{3}+3)(3+\sqrt{3})}{2} = \cfrac{9\sqrt{3}+9+9+3\sqrt{3}}{2} = \\\\=\cfrac{12\sqrt{3}+18}{2} =\cfrac{2(6\sqrt{3}+9)}{2} =6\sqrt{3}+9](https://tex.z-dn.net/?f=+S_%7BABC%7D%3D%5Ccfrac%7B1%7D%7B2%7D+%5Ccdot+AC+%5Ccdot+BC+%3D%5Ccfrac%7B%283%5Csqrt%7B3%7D%2B3%29%283%2B%5Csqrt%7B3%7D%29%7D%7B2%7D+%3D++++%5Ccfrac%7B9%5Csqrt%7B3%7D%2B9%2B9%2B3%5Csqrt%7B3%7D%7D%7B2%7D+%3D+++%5C%5C%5C%5C%3D%5Ccfrac%7B12%5Csqrt%7B3%7D%2B18%7D%7B2%7D+%3D%5Ccfrac%7B2%286%5Csqrt%7B3%7D%2B9%29%7D%7B2%7D+%3D6%5Csqrt%7B3%7D%2B9++)
Ответ: 6√3+9 см²