Наибольший корень уравнения равен? пожалуйста подробно

0 голосов
12 просмотров

Наибольший корень уравнения равен? пожалуйста подробно


image

Алгебра (43 баллов) | 12 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

20-х >=0
х<=20 <br>
-10-х >= 0
х <= -10<br>
Область определения: х <= -10<br>
20-х = (-10-х)^2

20-х = 100+20х+х^2

х^2 + 21х + 80 = 0

D = 21^2 - 4*80 = 121

х1 = (-21+11)/2=-5 - посторонний корень

х2=(-21-11)/2=-16 - наибольший корень

Ответ:-16

(5.3k баллов)
0

-10-(-5) >= 0

0

Странно..

0

Тогда нет решений?

0

Почему? -16 подходит

0

А, да.

0

Шлю Вам на исправление

0

Пришлите мне исправление, я почему-то не могу исправить

0

Извините, у меня нет кнопки "редактировать" . Можете удалять ответ...

0

Я Вам еще раз пошлю на исправление, кнопка должна появиться

0

спасибо, исправила

0 голосов

ОДЗ: 20-x >= 0
-x >= -20
x <= 20<br>
-10-x >= 0
-x >= 10
x <= -10<br>
x € (-беск; -10].

Возведем левую и правую части в квадрат:
20-x = (-10-x)^2
20-x = 100 + 20x + x^2
x^2+20x+x+100-20=0
x^2+21x + 80 = 0
D = 441 - 4*1*80 = 121
x1 = (-21+11)/2 = -5 -- не удовл.
x2 = (-21-11)/2 = -16

Наибольший корень: x = -16.

(41.5k баллов)
0

- 5 - посторонний корень