Нужна помощь с физикой! Со дна озера медленно с постоянной скоростью поднимают ** тросе...

0 голосов
108 просмотров

Нужна помощь с физикой!
Со дна озера медленно с постоянной скоростью поднимают на тросе сетку с алюминиевыми брусками. Общая масса брусков составляет 540 кг. Трос длиной 4 м состоит из 100 стальных проволок с площадью поперечного сечения по 1 мм^2. Определите (в миллиметрах) удлинение троса, считая, что g = 10 м/с^2. Плотность воды равна 1000 кг/м^3, плотность алюминия - 2700 кг/м^3; модуль Юнга стали - 200 ГПа.


Физика (15 баллов) | 108 просмотров
0

Пожалуйста, помогите!!!

Дано ответов: 2
0 голосов
Правильный ответ

1)

Вес брусков в воздухе:

P = m·g = 540·10 = 5 400 Н

2)

Объем брусков:

V = m / ρ ал = 540 / 2700 = 0,2 м³

3)

Сила Архимеда:

Fa = ρводы·g·V = 1000·10·0,2 = 2 000 Н

4)

Натяжение троса:

F = P - Fа = 5400 - 2000 = 3400 Н

5)

Площадь троса:

S = S₁·n = 1·100 = 100 мм² = 100·10⁻⁶ м²

5)

Механическое напряжение троса:

σ = F / S = 3400 / (100·10⁻⁶) = 34·10 ⁶ Па

6)

Удлинение найдем из закона Гука:

σ = ε·E

σ = (ΔL/L)·E

ΔL = σ·L / E = 34·10⁶·4 / (200·10⁹) ≈ 0,68·10⁻³ м или 0,68 мм

(161k баллов)
0

Спасибо!

0 голосов

m = 540 кг

l = 4 м

n = 100

s = 1 мм² = 10⁻⁶ м²

g = 10 м/с²

ρ₁ = 1000 кг/м³

ρ₂ = 2700 кг/м³

Е = 200 ГПа = 2·10¹¹ Па

Δl - ?

Сила натяжения троса: F = mg - ρ₁gV = mg - ρ₁gm/ρ₂ = (1 - ρ₁/ρ₂)·mg = (ρ₂ - ρ₁)·mg/ρ₂.

Механическое напряжение, возникающеев тросе:

σ = F/S = F/(n·s) = (ρ₂ - ρ₁)·mg/(ρ₂·n·s).

С другой стороны: σ = Е·Δl/l.

Поэтому: (ρ₂ - ρ₁)·mg/(ρ₂·n·s) = Е·Δl/l.

Удлинение троса: Δl = (ρ₂ - ρ₁)·mg·l/(ρ₂·n·s·E).

Δl = (2700 - 1000)·540·10·4/(2700·100·10⁻⁶·2·10¹¹) = 68·10⁻⁵ м = 0,68 мм

(23.0k баллов)