В сундуке у Хагрида хранится 155 шариков десяти различных цветов. Некоторые шарики...

0 голосов
319 просмотров

В сундуке у Хагрида хранится 155 шариков десяти различных цветов. Некоторые шарики волшебные и могут в разные моменты оказаться любого из этих десяти цветов (но меняют цвет только тогда, когда сундук закрыт и заперт). Однажды Хагрид открыл сундук, пересчитал шарики каждого цвета (каждого цвета оказалось разное количество шариков), выписал список цветов в порядке убывания количества шариков, закрыл и запер сундук. На следующий день Хагрид проделал то же самое и обнаружил, что в его втором списке цвета идут в точности в обратном порядке (по отношению к первому списку). Какое наименьшее количество волшебных шариков может быть в сундуке?


Математика (766 баллов) | 319 просмотров
Дан 1 ответ
0 голосов

Пусть цвета будут a1,a2,a3,...,a10

Поделим шары на две группы ((x1,x2,x3,x4,x5),(y1,y2,y3,y4,y5)) так чтобы им соответствовали цвета ((a1,a2,a3,a4,a5),(a6,a7,a8,a9,a10)) соотвественно и выполнялись неравенства x1> x2...x5>y1>y2...>y5  

Тогда нужно найти минимум значение разности

S=(x1-x1)+(x2-y2)+...(x5-y5)

При условий

x1+x2+...+x5+y1+y2+...+y5=155

Тогда S=155-2(y1+y2+y3+y4+y5)

То есть надо найти максимум y1+y2+y3+y4+y5

Так как все числа разные и отметим что

11+12+13+14+15+16+17+18+19+20=155

То сумма первых 5 чисел не может быть больше 15*5=75

Значит максимум y1+y2+y3+y4+y5=11+12+13+14+15=65 откуда

S=155-2*65=25

 Ответ 25

(224k баллов)