Написать все формулы, связанные с радиусами описанной и вписанной окружности.

0 голосов
29 просмотров

Написать все формулы, связанные с радиусами описанной и вписанной окружности.


Геометрия (1.2k баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Обозначения:

R — радиус описанной окружности;

r — радиус вписанной окружности;

r_a — радиус вневписанной окружности, соответствующей стороне a;

\alpha, \: \beta, \: \gamma — углы, противолежащие сторонам a, b и c соответственно;

h_a — высота, соответствующая стороне a.



\dfrac{a}{\sin \alpha}=\dfrac{b}{\sin \beta}=\dfrac{c}{ \sin \gamma}=2R — теорема синусов.

S=\dfrac{abc}{4R}=pr — формулы площади треугольника.

\dfrac{1}{r_a}+\dfrac{1}{r_b}+\dfrac{1}{r_c}=\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}=\dfrac{1}{r} — связь между радиусами вневписанных окружностей, длинами высот и радиусом вписанной окружности.

r_a+r_b+r_c-r=4R

\cos \alpha + \cos \beta + \cos \gamma=1+ \dfrac{r}{R}

S=2R^2 \sin \alpha \sin \beta \sin \gamma=Rr(\sin \alpha + \sin \beta + \sin \gamma)=\\ =4Rr \cos \dfrac{\alpha}{2} \cos \dfrac{\beta}{2} \cos \dfrac{\gamma}{2}=\sqrt{rr_ar_br_c

— менее известные формулы площади треугольника.

d^2=R^2-2Rr — формула Эйлера, где d — расстояние между центрами вписанной и описанной окружностей.

d_a^2=R^2+2Rr_a — аналог формулы Эйлера для вычисления расстояния между центрами вневписанной (соответствующей стороне a) и описанной окружностей.

***

Этого хватит? Ведь записать «все» формулы невозможно: комбинируя имеющиеся формулы и находя новые зависимости, можно создать практически бесконечный список.

(9.6k баллов)