Найдите стороны прямаугольника если известно что из них ** 14 см больше другой, а...

0 голосов
17 просмотров

Найдите стороны прямаугольника если известно что из них на 14 см больше другой, а диагональ прямаугольника равно 34 см. помогите пожалуйста.


Алгебра (83 баллов) | 17 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть стороны прямоугольника х и (х+14). Диагональ делит прямоугольник на 2 равных прямоугольных треугольника с катетами х и х+14 и гипотенузой 34 см.

По теореме Пифагора

х^2+(х+14)^2=34^2

х^2+х^2+28х+196=1156

2х^2+28х-960=0

х^2+14х-480=0

х1+х2=-14 (теорема Виета)

х1х2=-480

х=-30<0 и х=16 (см) - одна сторона прямоугольника, другая сторона 16+14=30(см). </p>

(129k баллов)