0, b > 0, a \neq b.\} \\ \left( \frac{ a }{ \sqrt{ab} - b } - \frac{ \sqrt{b} }{ \sqrt{b} - \sqrt{a} \right) } \times \frac{ \left( \sqrt{a} - \sqrt{b} \right) }{ a + b} = \left( \frac{ a }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } + \frac{ b }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } \right) \times \frac{ \left( \sqrt{a} - \sqrt{b} \right) }{ a + b} = \frac{ a + b }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } \times \frac{ b \left( \sqrt{a} + \sqrt{b} \right) }{ a + b } = \frac{ \sqrt{b} \left( \sqrt{a} + \sqrt{b} \right) }{ \sqrt{a} - \sqrt{b} }. " alt=" \{a > 0, b > 0, a \neq b.\} \\ \left( \frac{ a }{ \sqrt{ab} - b } - \frac{ \sqrt{b} }{ \sqrt{b} - \sqrt{a} \right) } \times \frac{ \left( \sqrt{a} - \sqrt{b} \right) }{ a + b} = \left( \frac{ a }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } + \frac{ b }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } \right) \times \frac{ \left( \sqrt{a} - \sqrt{b} \right) }{ a + b} = \frac{ a + b }{ \sqrt{b} \left( \sqrt{a} - \sqrt{b} \right) } \times \frac{ b \left( \sqrt{a} + \sqrt{b} \right) }{ a + b } = \frac{ \sqrt{b} \left( \sqrt{a} + \sqrt{b} \right) }{ \sqrt{a} - \sqrt{b} }. " align="absmiddle" class="latex-formula">