Основанием прямого параллелепипеда является ромб, один из углов которого равен альфа....

0 голосов
90 просмотров

Основанием прямого параллелепипеда является ромб, один из углов которого равен альфа. Найдите площадь поверхности цилиндра, вписанного в данный параллелепипед, если площадь боковой поверхности параллелепипеда равна S


Геометрия (12 баллов) | 90 просмотров
Дан 1 ответ
0 голосов

Пусть сторона ромба равна b, а высота параллелелепипеда равна h.  

Площадь боковой поверхности параллелепипеда равна 4bh (боковые грани суть четыре прямоугольника b × h). Значит, 4bh = S.  

Диаметр вписанной окружности ромба (являющейся основанием цилиндра) равен высоте ромба, то есть b sin α. Высота цилиндра равна высота параллелепипеда, то есть h. Площадь боковой поверхности цилиндра πbh sin α. Подставляем сюда bh = ¼S. Ответ: ¼πS sin α.

(285 баллов)