0; cosx<0; \\\\\frac{\pi }{2}+2 \pi <x<\frac{3\pi }{2}+2 \pi n; n \in Z" alt="\displaystyle (2cos^2x-sinx-1)*log_{0.5}(-0.5cosx)=0\\\\ODZ:\\-0.5cosx>0; cosx<0; \\\\\frac{\pi }{2}+2 \pi <x<\frac{3\pi }{2}+2 \pi n; n \in Z" align="absmiddle" class="latex-formula">
![\displaystyle \left[\begin{array}{cc}2cos^2x-sinx-1=0\\log_{0.5}(-0.5cosx)=0\end] \displaystyle \left[\begin{array}{cc}2cos^2x-sinx-1=0\\log_{0.5}(-0.5cosx)=0\end]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2cos%5E2x-sinx-1%3D0%5C%5Clog_%7B0.5%7D%28-0.5cosx%29%3D0%5Cend%5D)
1)
![\displaystyle 2cos^2x-sinx-1=0\\\\2(1-sin^2x)-sinx-1=0\\-2sin^2x-sinx+1=0\\\\2sin^2x+sinx-1=0\\sinx=t; |t|\leq 1\\2t^2+t-1=0\\D=1+8=9\\\\t_{1.2}=\frac{-1 \pm 3}{4}\\\\t_1=-1; t_2= \frac{1}{2} \displaystyle 2cos^2x-sinx-1=0\\\\2(1-sin^2x)-sinx-1=0\\-2sin^2x-sinx+1=0\\\\2sin^2x+sinx-1=0\\sinx=t; |t|\leq 1\\2t^2+t-1=0\\D=1+8=9\\\\t_{1.2}=\frac{-1 \pm 3}{4}\\\\t_1=-1; t_2= \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%202cos%5E2x-sinx-1%3D0%5C%5C%5C%5C2%281-sin%5E2x%29-sinx-1%3D0%5C%5C-2sin%5E2x-sinx%2B1%3D0%5C%5C%5C%5C2sin%5E2x%2Bsinx-1%3D0%5C%5Csinx%3Dt%3B%20%7Ct%7C%5Cleq%201%5C%5C2t%5E2%2Bt-1%3D0%5C%5CD%3D1%2B8%3D9%5C%5C%5C%5Ct_%7B1.2%7D%3D%5Cfrac%7B-1%20%5Cpm%203%7D%7B4%7D%5C%5C%5C%5Ct_1%3D-1%3B%20t_2%3D%20%5Cfrac%7B1%7D%7B2%7D)
![\displaystyle sinx=-1; x_1=\frac{3\pi }{2}+2 \pi n; n \in Z\\\\sinx= \frac{1}{2}; x_2= \frac{\pi }{6}+2 \pi n; n \in Z; x_3=\frac{5\pi }{6}+2 \pi n; n\ in Z \displaystyle sinx=-1; x_1=\frac{3\pi }{2}+2 \pi n; n \in Z\\\\sinx= \frac{1}{2}; x_2= \frac{\pi }{6}+2 \pi n; n \in Z; x_3=\frac{5\pi }{6}+2 \pi n; n\ in Z](https://tex.z-dn.net/?f=%5Cdisplaystyle%20sinx%3D-1%3B%20x_1%3D%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%2B2%20%5Cpi%20n%3B%20n%20%5Cin%20Z%5C%5C%5C%5Csinx%3D%20%5Cfrac%7B1%7D%7B2%7D%3B%20x_2%3D%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2B2%20%5Cpi%20n%3B%20n%20%5Cin%20Z%3B%20x_3%3D%5Cfrac%7B5%5Cpi%20%7D%7B6%7D%2B2%20%5Cpi%20n%3B%20n%5C%20in%20Z)
теперь проверим корни по ОДЗ:
х₁∉ОДЗ; х₂∉ОДЗ; х₃∈ ОДЗ
Ответ: х=5π/6+2πn; n∈Z
2)
![\displaystyle log_{0.5}(-0.5cosx)=0\\\\-0.5cosx=1\\\\cosx =-2 \displaystyle log_{0.5}(-0.5cosx)=0\\\\-0.5cosx=1\\\\cosx =-2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20log_%7B0.5%7D%28-0.5cosx%29%3D0%5C%5C%5C%5C-0.5cosx%3D1%5C%5C%5C%5Ccosx%20%3D-2)
Решений нет
Выбор корней на промежутке [-6π; -4π]
-6π+5π/6= -31π/6