Пусть середина стороны ВС - точка Е.
МЕ - медиана треугольника ВМС, и МЕ перпендикулярна ВС, так как вписанный угол ВЕМ опирается на диаметр ВМ. ПОЭТОМУ треугольник ВМС - равнобедренный, то есть ВМ = МС, которая в свою очередь равна АМ.
То есть точка М - равноудалена от вершин треугольника АВС, а, значит, является центром описанной окружности, и АМ = МС = МВ = АС/2 = 2 - радиус описанной окружности.