(7x-5)/(x^3-4) область определения

0 голосов
30 просмотров

(7x-5)/(x^3-4) область определения


Алгебра (17 баллов) | 30 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

image0\\\\Otvet:\; \; x\in (-\infty ,\sqrt[3]4)\cup (\sqrt[3]4,+\infty )\; ." alt="y=\frac{7x-5}{x^3-4}\\\\x^3-4\ne 0\\\\(x-\sqrt[3]4)(x^2+\sqrt[3]4\, x+\sqrt[3]{16})\ne 0\\\\a)\; \; x-\sqrt[3]4\ne 0\; \; \to \; \; x\ne \sqrt[3]4\\\\b)\; \; x^2+\sqrt[3]4\, x+\sqrt[3]{16}\ne 0\\\\D=\sqrt[3]{16}-4\sqrt[3]{16}=-3\sqrt[3]{16}<0\; \; \to \; \; x^2+\sqrt[3]4\, x+\sqrt[3]{16}>0\\\\Otvet:\; \; x\in (-\infty ,\sqrt[3]4)\cup (\sqrt[3]4,+\infty )\; ." align="absmiddle" class="latex-formula">

(834k баллов)
0 голосов

дробь имеет смысл в том случае , если знаменатель не равен 0. получаем: x^3-4=0. x^3=4. x=корень кубический из 4. Ответ: (-бесконечность: корень кубический из 4} U { корень кубический из 4: + бесконечность). корень кубический из 4 не входит в область допустимых значений.

(77.5k баллов)