в трапеции АВСД с основаниями АД и ВС диагонали пересекаются в точке...

0 голосов
50 просмотров

в трапеции АВСД с основаниями АД и ВС диагонали пересекаются в точке О.АД=24см,ВС=16см,АС=12см.Найдите длину отрезков ОА и ОС.


Геометрия (53 баллов) | 50 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Диагонали АС и ВD пересекаются в точке О и с основаниями образую треугольники ВОС и АОD. 
Примем ОС=х, тогда АО=12-х
Накрестлежащие углы в этих треугольниках равны⇒
∆ АОD ~ ∆ ВОС по двум равным углам при основаниях (вертикальные при О тоже равны). 
Из подобия следут отношение 
АО:ОС=АD:ВС
(
12-х):х=24:16
192=40х
х=4,8
ОС=4,8 см
АО=12-4,8=7,2 см

(228k баллов)