Даны вершины: A,(-3, 3) B (7, 5)C (4, 1).
Угол между прямыми АВ и АС можно определить двумя способами:
1) геометрическим по теореме косинусов,
2) векторным через скалярное произведение.
1) Расчет длин сторон
АВ (с) =√((Хв-Ха)²+(Ув-Уа)²) = √104 ≈ 10,19804.
BC (а)=√((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) =√((Хc-Хa)²+(Ус-Уa)²) = √53 ≈ 7,28011.
cos A=АВ²+АС²-ВС² =0,88897.
2*АВ*АС
A =0,475695219радиан,
A =27,25532837градусов
.
2) х у Длина
Вектор АВ 10 2 10,19804.
Вектор АС 7-2 7,28011.
Угол определяем по формуле:
α = arc cos |ax*bx+ay*by|/(√(ax^2+ay^2)*√(bx^2+bу^2)).
α = arc cos |10*7+2*(-2)|/(√104*√53) = 66/2√1378 = 33/√1378 ≈
33/37,12142239 ≈ 0,88897.
Угол дан выше.
.