√(1+∛х) Найти производную.

0 голосов
45 просмотров

√(1+∛х) Найти производную.


Алгебра (213 баллов) | 45 просмотров
Дан 1 ответ
0 голосов

Наша функция :

F(x) = \sqrt{1+\sqrt[3]{x} }

Это сложная функция, поэтому сначала берем производную от внутренней фунции, а затем уже от основной :

1. (1+\sqrt[3]{x}) ' = \frac{1}{3}x^{-\frac{2}{3} }

Умножаем это на производную от основной функции :

F'(x) = \frac{1}{3}x^{-\frac{2}{3} } * \frac{1}{2\sqrt{1+\sqrt[3]{x} } } = \frac{x^{-\frac{2}{3} } }{6\sqrt{1+\sqrt[3]{x} } }=\frac{1}{6x^{\frac{2}{3} } \sqrt{1+\sqrt[3]{x} }}

(262 баллов)
0

Большое спасибо