Найдите отношение площадей двух треугольников, если стороны одного треугольника равны 8...

0 голосов
36 просмотров

Найдите отношение площадей двух треугольников, если стороны одного треугольника равны 8 см, 10 см, 6 см, а стороны другого треугольника 12 см, 15 см, 9 смПОЖАЛУЙСТА ПОМОГИТЕ ДАМ МНОГО БАЛОВОЧЕНЬ НЕОБХОДИМО


Геометрия (12 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

Проверим эти треугольники на подобие
составим отношения
\frac{9}{6} = \frac{15}{10} = \frac{12}{8} \\ \frac{3}{2} = \frac{3}{2} = \frac{3}{2}
значит треугольники подобны по третьему признаку
коэффициент подобия равен
k = \frac{3}{2}
площади подобных фигур относятся как коэффициент подобия в квадрате.
\frac{s1}{s2} = {k}^{2}
значит
\frac{s1}{s2} = {( \frac{3}{2}) }^{2} \\ \frac{s1}{s2} = \frac{9}{4}

(1.0k баллов)