Решить систему уравнений: 2 (x+y)=26, xy=42.

0 голосов
58 просмотров

Решить систему уравнений:

2 (x+y)=26,
xy=42.


Алгебра (14 баллов) | 58 просмотров
Дано ответов: 2
0 голосов

Задание довольно простое,сначало находим Х,который записан справа)а затем элементарно решаем систему с дискриминантом_записываем в ответ все 4 значения)


image
(28 баллов)
0

у меня в дискриминанте -9 получается

0

1. 2*(X+Y)=2*X+2*Y Выражение: 2*(X+Y)=26

Ответ: 2*X+2*Y-26=0

Решаем по действиям:
1. 2*(X+Y)=2*X+2*Y

Решаем по шагам:
1. 2*X+2*Y-26=0
1.1. 2*(X+Y)=2*X+2*Y

Решаем уравнение 2*X+2*Y-26=0:
Тестовая функция, правильность не гарантируется
Решаем относительно Y:
Y=(-2*X+26)/2=-2*X/2+26/2=-X+26/2=-X+13.

0 голосов

Если тиорема Виета не спасает, то действуем в лоб
1 шаг: Первое выражение делим на 2. Второе неизменно
x+y=13
x*y=42.
2 шаг: В первом выражении виажаем любую из переменных(допустим это будет икс. Это роли не играет). Второе оставляем неизменным
х=(-у)+13
x*y=42
3 шаг: Подставляем полученуую выраженную переменную во второе
х=(-у)+13
((-у)+13)*у=42
4 шаг: Расрываем скобки и переносим число из правой части в левую, приравнивая к нулю
х=(-у)+13
-у^2+13у-42=0
5 шаг. Придётся ненадоло забыть про систему и решать вне её.

Вспоминаем общий вид квадратного уравнения a*x^2+b*x+c
Отсюда выводим коэффиценты а, b и с
а=(-1)
b=13
с=(-42)
Ну а дальше по формуле дискриминанта находим корни
D^2 = b^2-4*a*c
Х(первый )= (-b+D)/2a  Х(второй) = (-b-D)/2a
Для данного получается...
D^2 = 13^2-4*(-1)*(-42) = 169-4*42- 169-168=1 Корень из 1 равень 1
Х(первый )= (-13+1)/2*(-1) = (-12)/(-2) = 6
Х(второй) = (-13-1)/2*(-1) = (-14)/(-2) = 7 
6 шаг: Вспоминаем про систему и подставляем полученное значение переменной икс в любое из начальных значений системы:
2 (x+y)=26
x*y=42
Тут - то и молучается ответ двумя системами.
Х=6, У=7
Х=7, У=6

(108 баллов)