Если тиорема Виета не спасает, то действуем в лоб
1 шаг: Первое выражение делим на 2. Второе неизменно
x+y=13
x*y=42.
2 шаг: В первом выражении виажаем любую из переменных(допустим это будет икс. Это роли не играет). Второе оставляем неизменным
х=(-у)+13
x*y=42
3 шаг: Подставляем полученуую выраженную переменную во второе
х=(-у)+13
((-у)+13)*у=42
4 шаг: Расрываем скобки и переносим число из правой части в левую, приравнивая к нулю
х=(-у)+13
-у^2+13у-42=0
5 шаг. Придётся ненадоло забыть про систему и решать вне её.
Вспоминаем общий вид квадратного уравнения a*x^2+b*x+c
Отсюда выводим коэффиценты а, b и с
а=(-1)
b=13
с=(-42)
Ну а дальше по формуле дискриминанта находим корни
D^2 = b^2-4*a*c
Х(первый )= (-b+D)/2a Х(второй) = (-b-D)/2a
Для данного получается...
D^2 = 13^2-4*(-1)*(-42) = 169-4*42- 169-168=1 Корень из 1 равень 1
Х(первый )= (-13+1)/2*(-1) = (-12)/(-2) = 6
Х(второй) = (-13-1)/2*(-1) = (-14)/(-2) = 7
6 шаг: Вспоминаем про систему и подставляем полученное значение переменной икс в любое из начальных значений системы:
2 (x+y)=26
x*y=42
Тут - то и молучается ответ двумя системами.
Х=6, У=7
Х=7, У=6