Докажите что если один из углов треугольника прямой, то два другие острые!! с рисунком и...

0 голосов
24 просмотров

Докажите что если один из углов треугольника прямой, то два другие острые!! с рисунком и дано и доказательство, а ещё как будто вы не знаете что треугольники равен 180° так нужно, сказали!!!


Геометрия (34 баллов) | 24 просмотров
Дан 1 ответ
0 голосов

Дано: треугольник ABC, ∠A = 90°

Доказать: ∠A < 90°, ∠B < 90°

Решение:

1) Проведём прямую, параллельную прямой, которой принадлежит сторона AB и проходящей через точку С. Обозначим точку D на этой прямой ниже точки C. Обозначим точку E на этой прямой выше точки C.

2) ∠B = ∠BCE как накрест лежащие при параллельных прямых AB и DE и секущей BC.

3) ∠A = ∠ACD как накрест лежащие при параллельных прямых AB и DE и секущей AC.

4) Так как ∠ACD = ∠ACE как односторонние при параллельных прямых AB и DE и секущей AC, то ∠ACE = 90°.

5) Так как сумма односторонних углов равна 180°, то ∠ACE = 90°, а ∠BCE = ∠B, значит, ∠B < 90° и ∠С < 90°, поскольку ∠B + ∠С = 90°.

Значит, ∠B и ∠С - острые. Что и требовалось доказать.

(354 баллов)
0

можете пожалуйста рисунок прислать