0\; ,\; b=-2<0\; \; \Rightarrow \; \; \varphi \in (-\frac{\pi}{2},0)\\\\|z|=\sqrt{2^2+(-2)^2}=\sqrt8\\\\argz=\varphi =arctg(\frac{2}{-2})=arctg(-1)=-arctg1=-\frac{\pi }{4}\\\\z=\sqrt8\cdot (cos(-\frac{\pi }{4})+i\, sin(-\frac{\pi }{4}))\\\\z^5=\sqrt{8^5}\cdot (cos(-\frac{5\pi }{4})+i\, sin(-\frac{5\pi }{4}))" alt="z^5=(2-2i)^5\\\\z=2-2i\; \; ,\; \; a=2>0\; ,\; b=-2<0\; \; \Rightarrow \; \; \varphi \in (-\frac{\pi}{2},0)\\\\|z|=\sqrt{2^2+(-2)^2}=\sqrt8\\\\argz=\varphi =arctg(\frac{2}{-2})=arctg(-1)=-arctg1=-\frac{\pi }{4}\\\\z=\sqrt8\cdot (cos(-\frac{\pi }{4})+i\, sin(-\frac{\pi }{4}))\\\\z^5=\sqrt{8^5}\cdot (cos(-\frac{5\pi }{4})+i\, sin(-\frac{5\pi }{4}))" align="absmiddle" class="latex-formula">
![-\frac{5\pi }{4}+2\pi =\frac{3\pi }{4}\\\\z^5=\sqrt{8^5}\cdot (cos\frac{3\pi }{4}+i\, sin\frac{3\pi }{4}) -\frac{5\pi }{4}+2\pi =\frac{3\pi }{4}\\\\z^5=\sqrt{8^5}\cdot (cos\frac{3\pi }{4}+i\, sin\frac{3\pi }{4})](https://tex.z-dn.net/?f=-%5Cfrac%7B5%5Cpi%20%7D%7B4%7D%2B2%5Cpi%20%3D%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%5C%5C%5C%5Cz%5E5%3D%5Csqrt%7B8%5E5%7D%5Ccdot%20%28cos%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%2Bi%5C%2C%20sin%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%29)