Распишу коротко, алгоритм должен быть правильным, но за вычислительные ошибки ответственности не несу.
Посмотрим на , это парабола с ветвями вверх, значения такой функции будут при , меньше - очевидно.
1) Рассмотрим исходное неравенство при
Левая часть упростится до константы, неравенство будет выглядеть так:
0" alt="f(x,a)=-x^2+6x-16-a^2+a>0" align="absmiddle" class="latex-formula">
Это парабола с ветвями вниз, параметр лишь поднимает/опускает ее по оси
Чтобы у была некая область значений строго больших нуля необходимо чтобы дискриминант был больше нуля (в этом случае парабола пересечет ось и ее "горб" залезет в область положительных ). Посчитаем дискриминант
Эта ф-ия парабола, притом
Значит такой случай отпадает.
2) Пусть теперь
Левая часть упростится до , что мы можем раскрыть со знаком минус т.к. ф-ия под модулем всегда больше либо равна нулю
Итого неравенство станет таким
0" alt="-3x^2+18x-26+a-a^2>0" align="absmiddle" class="latex-formula">
Как и в предыдущем случае смотрим на дискриминант
0" alt="D(a)>0" align="absmiddle" class="latex-formula"> при
т.е. только при таких нер-во потенциально может иметь решение. Вновь значение параметра передвигает параболу (с ветвями вниз) вдоль прямой
Понятно что середина "горба", пересекающего прямую , лежит в точке с абсциссой , а края
отстоят от точки на некоторые равные расстояния
Чтобы нер-во имело единственное целочисленное решение, необходимо наложить условия на края "горба"
2}} \right." alt="\left \{ {{3 + 1/3\,\sqrt {-3\,{a}^{2}+3\,a+3}<4} \atop {3 - 1/3\,\sqrt {-3\,{a}^{2}+3\,a+3}>2}} \right." align="absmiddle" class="latex-formula">
Таким образом лишь решением будет лишь целая точка
Решение системы выглядит как
Что и будет ответом