Используем теорему косинусов
с² = a² + b² - 2ac * cos(C)
25² = 6² + 29² - 2 * 6 * 29 * cos(C)
625 = 36 + 841 - 348cos(C)
625 = 877 - 348cos(C)
348cos(C) = 877 - 625
348cos(C) = 252
![cos(C)=\displaystyle\frac{252}{348} \approx0.72 cos(C)=\displaystyle\frac{252}{348} \approx0.72](https://tex.z-dn.net/?f=cos%28C%29%3D%5Cdisplaystyle%5Cfrac%7B252%7D%7B348%7D%20%5Capprox0.72)
Косинус в 0,72 есть угол в ≈ 44°
Рассмотрим ΔAHC - прямоугольный
По теореме синусов
![\displaystyle\frac{b}{sin(H)}=\frac{AH}{sin(C)}\\\\\\\frac{29}{sin(90)} =\frac{AH}{sin(44)} \\\\\\AH = \frac{29\times0.69}{1} \approx20 \displaystyle\frac{b}{sin(H)}=\frac{AH}{sin(C)}\\\\\\\frac{29}{sin(90)} =\frac{AH}{sin(44)} \\\\\\AH = \frac{29\times0.69}{1} \approx20](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7Bb%7D%7Bsin%28H%29%7D%3D%5Cfrac%7BAH%7D%7Bsin%28C%29%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B29%7D%7Bsin%2890%29%7D%20%3D%5Cfrac%7BAH%7D%7Bsin%2844%29%7D%20%5C%5C%5C%5C%5C%5CAH%20%3D%20%5Cfrac%7B29%5Ctimes0.69%7D%7B1%7D%20%5Capprox20)
Ответ: AH ≈ 20 см