0\\32x>24\\x>\frac34" alt="2.\\f(x)=\frac14\cos4x\\f'(x)=-\sin4x\\f'(x_0)=f'(\frac\pi{16})=-\sin\left(4\cdot\farc\pi{16}\right)=-\sin\frac\pi4=-\frac1{\sqrt2}\\\\3.\\f(x)=(x^2-2x-3)^2\\f'(x)=2(x^2-2x-3)\cdot(x^2-2x-3)'=2(x^2-2x-3)(2x-2)\\2(x^2-2x-3)(2x-2)=0\\4(x-3)(x+1)(x-1)=0\\x_1=3,\;x_2=-1,\;x_3=1\\\\4.\\g(x)=(3-4x)^2\\g'(x)=2(3-4x)\cdot(3-4x)'=-8(3-4x)=32x-24\\32x-24>0\\32x>24\\x>\frac34" align="absmiddle" class="latex-formula">