Ответ:
Пошаговое объяснение:
1) sinx+1=0
sinx=-1
x=-п/2+2пn, n∈Z
n=0 ;х=-п/2 ∉ (-π/2; 2π)
n=1 ;х=-п/2+2п=1 1/2п ∈ (-π/2; 2π)
n=2 ;х=-п/2+4п ∉ (-π/2; 2π)
2) tgx+1/3=0
tgx=-1/3
x=arctg(-1/3)+пк=-arctg(1/3)+пк, к∈Z
≈0,7≈0,2п
n=-1; x≈-0.2п-п ∉ (-π/2; 2π)
n=0; x≈-0.2п ∈ (-π/2; 2π)
n=1; x≈-0.2п+п≈0,8п ∈ (-π/2; 2π)
n=2; x≈-0.2п+2п≈1,8п ∈ (-π/2; 2π)
таким образом
х₁=1 1/2п ;
x₂=arctg(1/3)
x₃=arctg(1/3)+п
x₄=arctg(1/3)+2п