![\log_{0{,}6}\left(\sin\left(\dfrac{1}{2}\arccos\left(-\dfrac{1}{5}\right)\right)\right)=\log_{\tfrac{3}{5}}\left(\sin\left(\dfrac{\pi-\arccos\tfrac{1}{5}}{2}\right)\right)=\\\\=\log_{\tfrac{3}{5}}\left(\sin\left(\dfrac{\pi}{2}-\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right)=\log_{\tfrac{3}{5}}\left(\cos\left(\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right) \log_{0{,}6}\left(\sin\left(\dfrac{1}{2}\arccos\left(-\dfrac{1}{5}\right)\right)\right)=\log_{\tfrac{3}{5}}\left(\sin\left(\dfrac{\pi-\arccos\tfrac{1}{5}}{2}\right)\right)=\\\\=\log_{\tfrac{3}{5}}\left(\sin\left(\dfrac{\pi}{2}-\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right)=\log_{\tfrac{3}{5}}\left(\cos\left(\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right)](https://tex.z-dn.net/?f=%5Clog_%7B0%7B%2C%7D6%7D%5Cleft%28%5Csin%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Carccos%5Cleft%28-%5Cdfrac%7B1%7D%7B5%7D%5Cright%29%5Cright%29%5Cright%29%3D%5Clog_%7B%5Ctfrac%7B3%7D%7B5%7D%7D%5Cleft%28%5Csin%5Cleft%28%5Cdfrac%7B%5Cpi-%5Carccos%5Ctfrac%7B1%7D%7B5%7D%7D%7B2%7D%5Cright%29%5Cright%29%3D%5C%5C%5C%5C%3D%5Clog_%7B%5Ctfrac%7B3%7D%7B5%7D%7D%5Cleft%28%5Csin%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B2%7D-%5Cdfrac%7B%5Carccos%7B%5Ctfrac%7B1%7D%7B5%7D%7D%7D%7B2%7D%5Cright%29%5Cright%29%3D%5Clog_%7B%5Ctfrac%7B3%7D%7B5%7D%7D%5Cleft%28%5Ccos%5Cleft%28%5Cdfrac%7B%5Carccos%7B%5Ctfrac%7B1%7D%7B5%7D%7D%7D%7B2%7D%5Cright%29%5Cright%29)
- Рассмотрим
Заметим, что
![\arccos1<\arccos\tfrac{1}{5}<\arccos0\\\\0<\arccos\tfrac{1}{5}<\dfrac{\pi}{2}\\\\0<\dfrac{\arccos\tfrac{1}{5}}{2}<\dfrac{\pi}{4} \arccos1<\arccos\tfrac{1}{5}<\arccos0\\\\0<\arccos\tfrac{1}{5}<\dfrac{\pi}{2}\\\\0<\dfrac{\arccos\tfrac{1}{5}}{2}<\dfrac{\pi}{4}](https://tex.z-dn.net/?f=%5Carccos1%3C%5Carccos%5Ctfrac%7B1%7D%7B5%7D%3C%5Carccos0%5C%5C%5C%5C0%3C%5Carccos%5Ctfrac%7B1%7D%7B5%7D%3C%5Cdfrac%7B%5Cpi%7D%7B2%7D%5C%5C%5C%5C0%3C%5Cdfrac%7B%5Carccos%5Ctfrac%7B1%7D%7B5%7D%7D%7B2%7D%3C%5Cdfrac%7B%5Cpi%7D%7B4%7D)
Следовательно,
0" alt="\cos\left(\dfrac{\arccos\tfrac{1}{5}}{2}\right)>0" align="absmiddle" class="latex-formula">
- Найдём значение этого косинуса
Для удобства обозначим ![\varphi=\arccos\tfrac{1}{5} \varphi=\arccos\tfrac{1}{5}](https://tex.z-dn.net/?f=%5Cvarphi%3D%5Carccos%5Ctfrac%7B1%7D%7B5%7D)
![\cos\varphi=\dfrac{1}{5}\\\\\cos\left(2\cdot\dfrac{\varphi}{2}}\right)=\dfrac{1}{5}\\\\2\cos^2\left(\dfrac{\varphi}{2}\right)-1=\dfrac{1}{5}\\\\\cos\dfrac{\varphi}{2}=\pm\sqrt{\dfrac{3}{5}} \cos\varphi=\dfrac{1}{5}\\\\\cos\left(2\cdot\dfrac{\varphi}{2}}\right)=\dfrac{1}{5}\\\\2\cos^2\left(\dfrac{\varphi}{2}\right)-1=\dfrac{1}{5}\\\\\cos\dfrac{\varphi}{2}=\pm\sqrt{\dfrac{3}{5}}](https://tex.z-dn.net/?f=%5Ccos%5Cvarphi%3D%5Cdfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ccos%5Cleft%282%5Ccdot%5Cdfrac%7B%5Cvarphi%7D%7B2%7D%7D%5Cright%29%3D%5Cdfrac%7B1%7D%7B5%7D%5C%5C%5C%5C2%5Ccos%5E2%5Cleft%28%5Cdfrac%7B%5Cvarphi%7D%7B2%7D%5Cright%29-1%3D%5Cdfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ccos%5Cdfrac%7B%5Cvarphi%7D%7B2%7D%3D%5Cpm%5Csqrt%7B%5Cdfrac%7B3%7D%7B5%7D%7D)
Т.к. мы определили, что
0" alt="\cos\left(\dfrac{\arccos\tfrac{1}{5}}{2}\right)>0" align="absmiddle" class="latex-formula">, то получаем
![\cos\left(\dfrac{\arccos\tfrac{1}{5}}{2}\right)=\sqrt{\dfrac{3}{5}} \cos\left(\dfrac{\arccos\tfrac{1}{5}}{2}\right)=\sqrt{\dfrac{3}{5}}](https://tex.z-dn.net/?f=%5Ccos%5Cleft%28%5Cdfrac%7B%5Carccos%5Ctfrac%7B1%7D%7B5%7D%7D%7B2%7D%5Cright%29%3D%5Csqrt%7B%5Cdfrac%7B3%7D%7B5%7D%7D)
- Возвращаемся к преобразованному уравнению
![\log_{\tfrac{3}{5}}\left(\cos\left(\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right)=\log_{\tfrac{3}{5}}\left(\sqrt{\dfrac{3}{5}}\right)=0{,}5 \log_{\tfrac{3}{5}}\left(\cos\left(\dfrac{\arccos{\tfrac{1}{5}}}{2}\right)\right)=\log_{\tfrac{3}{5}}\left(\sqrt{\dfrac{3}{5}}\right)=0{,}5](https://tex.z-dn.net/?f=%5Clog_%7B%5Ctfrac%7B3%7D%7B5%7D%7D%5Cleft%28%5Ccos%5Cleft%28%5Cdfrac%7B%5Carccos%7B%5Ctfrac%7B1%7D%7B5%7D%7D%7D%7B2%7D%5Cright%29%5Cright%29%3D%5Clog_%7B%5Ctfrac%7B3%7D%7B5%7D%7D%5Cleft%28%5Csqrt%7B%5Cdfrac%7B3%7D%7B5%7D%7D%5Cright%29%3D0%7B%2C%7D5)
Ответ. ![0{,}5 0{,}5](https://tex.z-dn.net/?f=0%7B%2C%7D5)