0\\
4t-t^2<0\\\\
2)4-2t<0\\
4t-t^2>0\\\\
4-2*log_{5}(3-2x)>0\\
4*log_{5}(3-2x)-log^2_{5}(3-2x)<0\\\\
3-2x>0\\
-2x>-3\\
x<1.5\\
log_{5}(3-2x)<2\\
3-2x<25\\
-2x<22\\
x>11\\
log_{5}(3-2x)(4-log_{5}(3-2x))<0\\
log_{5}(3-2x)>0\\
4-log_{5}(3-2x)<0\\\\
3-2x>1\\
3-2x>625\\
-2x>-2\\
x<1\\
-2x>622\\
x<-311
" alt="
\frac{1}{log_{5}(3-2x)}-\frac{1}{4-log_{5}(3-2x)}<0\\
log_{5}(3-2x)=t\\
\frac{1}{t}-\frac{1}{4-t}<0\\
\frac{4-t-t}{t(4-t)}<0\\
\frac{4-2t}{4t-t^2}<0\\
1)4-2t>0\\
4t-t^2<0\\\\
2)4-2t<0\\
4t-t^2>0\\\\
4-2*log_{5}(3-2x)>0\\
4*log_{5}(3-2x)-log^2_{5}(3-2x)<0\\\\
3-2x>0\\
-2x>-3\\
x<1.5\\
log_{5}(3-2x)<2\\
3-2x<25\\
-2x<22\\
x>11\\
log_{5}(3-2x)(4-log_{5}(3-2x))<0\\
log_{5}(3-2x)>0\\
4-log_{5}(3-2x)<0\\\\
3-2x>1\\
3-2x>625\\
-2x>-2\\
x<1\\
-2x>622\\
x<-311
" align="absmiddle" class="latex-formula">
теперь учитывая уравнения и решение получаем