Раскладываем знаменатель на множители:
int (dx* (2x+5)/ ( x^2*(x-1) +2*(x-1) ) ) = int ( dx*(2x+5)/(x^2+2)*(x-1) )=
int( dx* ((2x-2) +7)/(x^2+2)*(x-1) ) = 2*int(dx/(x^2+2)) +7*int(dx/(x^2+2)*(x-1) )
Решаю без метода неопределенных коэффициентов просто подгоняю числитель под нужный:
1/(x-1) +1/(x^2+2) =(x^2+2 +x-1)/(x^2+2)*(x-1) = (x^2+x+1)/(x^2+2)*(x-1)=
= ((x^2-x) +(2x-2) +3)/(x^2+2)*(x-1) = x/(x^2+2) + 2/(x^2+2) +3/(x^2+2)*(x-1)
1/(x^2+2)*(x-1)= 1/3 *(1/(x-1) +1/(x^2+2) -x/(x^2+2) -2/(x^2+2) )=
=1/3 *( 1/(x-1) -1/(x^2+2) -x/(x^2+2) )
2*int(dx/(x^2+2)) +7*int(dx/(x^2+2)*(x-1) )=
=7/3*int(dx/(x-1) ) -1/3 *int(dx/(x^2+2)) -7/3*int(dx*x/(x^2+2))=
7/3 *ln(x-1) +c -√2/6 *int ((1/√2)*dx/(1+(x/√2)^2 ) -7/6 *int (2x*dx/(x^2+2))=
=7/3*ln(x-1) -√2/6 *arctg(x/√2) -7/6*ln(x^2+2) +c=
7/6 *( 2*ln(x-1) -ln(x^2+2) ) -√2/6*arctg(x/√2) +c=7/6*ln((x-1)^2/(x^2+2)) +c-√2/6*arctg(x/√2)= 7/6 *ln ((x-1)^2/(x^2+2) ) -√2/6 *arctg(x*√2/2) +c
Ответ:( 7 *ln ( (x-1)^2 /(x^2+2) )-√2arctg(x*√2/2 ) )/6 +c