меньшее основание равнобочной трапеции равно 8, а боковая сторона 13. найдите радиус...

0 голосов
33 просмотров

меньшее основание равнобочной трапеции равно 8, а боковая сторона 13. найдите радиус вписанной в нее окружность.


Геометрия (33 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Окружность можно вписать в четырёхугольник, если суммы противоположных сторон равны.

Для данной равнобокой трапеции сумма боковых сторон равна 13+13 = 26, тогда и сумма оснований равна 26, т.е большее основание равно 26 - 8 = 18

Найдём высоту трапеции. По теореме Пифагора:

13² = Н² + ((18-8):2)²

13² = Н² + 5²

Н² = 169 - 25 = 144

Н = 12.

Центр окружности находится на прямой, соединяющей середины оснований

Поэтому радиус вписанной окружности равен половине высоты, т.е 6 см

Ответ r = 6см

 

(145k баллов)