5*sqrt (х)=x*(sqrt (x)-1) Помогите решить,пожалуйста,всего один пример!Буду вам очень...

0 голосов
36 просмотров

5*sqrt (х)=x*(sqrt (x)-1) Помогите решить,пожалуйста,всего один пример!Буду вам очень признательна!


Алгебра (68 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

image0\\\\\sqrt{x}=\frac{1+\sqrt{21}}{2}\; \; ,\; \; x=\Big (\frac{1+\sqrt{21}}{2}\Big )^2=\frac{22+2\sqrt{21}}{4}=\frac{11+\sqrt{21}}{2}\\\\Otvst:\; \; x_1=0\; ,\; x_2=\frac{11+\sqrt{21}}{2}" alt="5\sqrt{x}=x\cdot (\sqrt{x}-1)\; \; ,\; \; ODZ:\; x\geq 0\\\\x\sqrt{x}-x-5\sqrt{x}=0\\\\\sqrt{x}\cdot (x-\sqrt{x}-5)=0\\\\a)\; \; \sqrt{x}=0\; \; \to \; \; x=0\\\\b)\; \; x-\sqrt{x}-5=0\\\\t=\sqrt{x}\geq 0\; \; ,\; \; t^2-t-5=0\; \; ,\\\\D=1+20=21\; \; ,\; \; t_1=\frac{1-\sqrt{21}}{2}<0\; ,\; t_2=\frac{1+\sqrt{21}}{2}>0\\\\\sqrt{x}=\frac{1+\sqrt{21}}{2}\; \; ,\; \; x=\Big (\frac{1+\sqrt{21}}{2}\Big )^2=\frac{22+2\sqrt{21}}{4}=\frac{11+\sqrt{21}}{2}\\\\Otvst:\; \; x_1=0\; ,\; x_2=\frac{11+\sqrt{21}}{2}" align="absmiddle" class="latex-formula">

(832k баллов)
0

как же ты это делал

0

молодец

0

Спасибо)

0

скобки раскрыть надо сначала, а потом в правую часть всё перенести...

0

а тебя сколько лет

0

nnnlll54

0

и как тебя звать