В прямом параллелепипеде стороны равны 3 см и 8 см, угол между ними 60°. Площадь боковой поверхности параллелепипеда 220 см². Найдите меньшую диагональ параллелепипеда.
* * *
На рисунке меньшая диагональ АС1 соединяет вершины тупых углов противоположных оснований.
Для решения требуется найти высоту СС1 и диагональ АС основания. S (бок)=Р•Н, где Р - периметр основания параллелепипеда, Н - его высота. ⇒ Н=220:2•(8+3)=10 см.
По т.косинусов АС²=ВС²+АВ²-2ВС•АС•cos60° ⇒ АС²=9+64 - 2•24•1/2 ⇒ АС²=49.
Из ⊿ АСС1 по т.Пифагора АС1=√(AC²+CC1²)=√(100+49)=√149 см, т.е. ≈12,2 см