ПОМОГИТЕ ПЛЕЗ 14 ЗАДАЧА ПРОФИЛЬНЫЙ МАТАН !!! В основании пирамиды SABC лежит треугольник...

0 голосов
19 просмотров

ПОМОГИТЕ ПЛЕЗ 14 ЗАДАЧА ПРОФИЛЬНЫЙ МАТАН !!! В основании пирамиды SABC лежит треугольник АВС со сторонами АС = 9, ВС = 2√6, АВ = √105; вершина S проецируется в центр описанной окружности основания. а) Докажите, что точка S равноудалена от точек А, В и С. б) Точка Р лежит на ребре SC, точка Q – середина ребра SB, высота пирамиды SABC равна 10. Прямая РQ параллельна плоскости АВС. Найдите объем пирамиды SАРQ


Геометрия (154 баллов) | 19 просмотров
Дан 1 ответ
0 голосов

а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.

б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)

Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.

Заметим, что 9²+(2√6)²=(√105)², значит, треугольник ABC - прямоугольный. Объем пирамиды SABC: V=SH/3=((9*2√6)/2)*10/3=30√6

Искомый объем в четыре раза меньше, т.е. равен (15√6)/2

(5.1k баллов)