Ответ:
\left \{ {{c=2x_1x_2} \atop {x_1+x_2=3}} \right." alt="2x^2+6x+c=0\, |:2\\x^2+3x+\frac{c}{2}=0\\\\\left \{ {{x_1x_2=c/2} \atop {x_1+x_2=-3}} \right. \, =>\left \{ {{c=2x_1x_2} \atop {x_1+x_2=3}} \right." align="absmiddle" class="latex-formula">
Известно, что
Поэтому
\left \{ {{x_1=-3-x_2} \atop {-3-x_2-2x_2=3}} \right. \, =>\left \{ {{x_1=-3-x_2} \atop {-3x_2=6}} \right. \, =>\left \{ {{x_1=-3+2} \atop {x_2=-2}} \right. =>\\\\\\=>\left \{ {{x_1=-1} \atop {x_2=-2}} \right.\\\\c=2x_1x_2=2*(-1)(-2)=4" alt="\left \{ {{x_1+x_2=-3} \atop {x_1-2x_2=3}} \right.\, =>\left \{ {{x_1=-3-x_2} \atop {-3-x_2-2x_2=3}} \right. \, =>\left \{ {{x_1=-3-x_2} \atop {-3x_2=6}} \right. \, =>\left \{ {{x_1=-3+2} \atop {x_2=-2}} \right. =>\\\\\\=>\left \{ {{x_1=-1} \atop {x_2=-2}} \right.\\\\c=2x_1x_2=2*(-1)(-2)=4" align="absmiddle" class="latex-formula">
Ответ: с=4
Объяснение: