Ответ:
t = 2.4
k = 4.4
k = \frac{16 -3t}{2} \\ 3k + 2t = 18 \\ \frac{3}{2} (16 - 3t) + 2t = 18 \\ 48 - 9t + 4t = 36 \\ 5t = 12 \\ t = \frac{12}{5} = 1.4 \\ k = \frac{16 - \frac{36}{5} }{2} = 8 - 3.6 = 4.4" alt="2k + 3t = 16 = > k = \frac{16 -3t}{2} \\ 3k + 2t = 18 \\ \frac{3}{2} (16 - 3t) + 2t = 18 \\ 48 - 9t + 4t = 36 \\ 5t = 12 \\ t = \frac{12}{5} = 1.4 \\ k = \frac{16 - \frac{36}{5} }{2} = 8 - 3.6 = 4.4" align="absmiddle" class="latex-formula">