В равносторонний трапеции с углом 60 градусов высота, проведенная из вершины тупого угла, делит большую основу для отрезки 4 см и 10 см. Найдите периметр трапеции.
Дано: АВСД - равнобедренная трапеция, ВН, ВМ - высоты АВСД, ∠ВАД=60°, АН=4 см, НД=10 см.
Найти: 
Решение: Рассмотрим ΔАВН и ΔМСД - прямоугольные по определению. Поскольку ∠ВАД=∠СДМ=60° и АВ=СД - по свойству равнобедренной трапеции, то ∠АВН=∠МСД=30° и АВ=2АН - по свойству прямоугольного треугольника (катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы); АВ=2×4=8(см) и ВН=СМ - как высоты, тогда ΔАВН=ΔМСД - по двум сторонам и углу между ними ⇒ АН=МД=4 см, значит НМ=НД-МД=10-4=6 (см)
НВСД - прямоугольник по признаку (ВН=СМ, все углы - прямые), тогда НМ=ВС=6 (см) - по свойству прямоугольника.
= 2АВ + ВС + (НД + АН) = 2×8 + 6 + (10 + 4)=16+6+14=36 (см)
Ответ:
= 36 см