Ответ:
Объяснение:A+B+C=π
sin²A+sin²B+sin²C=(1-cos2A)/2+(1-cos2B)/2+sin²C=1-(cos2A+cos2B)/2+
Sin²C=1-cos(A+B)·cos(A-B)+1-cos²C=2-cos(π-C)·cos(A-B)-cos²C=
2+cosC·cos(A-B)-cos²C=2+cosC(cos(A-B)-cosC)=
2+cosC(cos(A-B)-cos(π-(A+B))=2+cosC(cos(A-B)+cos(A+B))=
2+2cosC·cosA·cosB.
тогда,sin²A+sin²B+sin²C-2cosCcosBcosC=2.