1)
![sin(2x)+cos(2x)=2tg(x)+1\\2sin(x)cos(x)+1-2sin^2(x)=2tg(x)+1\\2sin(x)cos(x)-2sin^2(x)=2tg(x)\\2sin(x)(cos(x)-sin(x))=2tg(x)\\cos(x)-sin(x)=\frac{1}{cos(x)}\\ cos^2(x)-sin(x)cos(x)=1\\2cos^2(x)-2sin(x)cos(x)=2\\2cos^2(x)-1+1-sin(2x)=2\\cos(2x)-sin(2x)=1 sin(2x)+cos(2x)=2tg(x)+1\\2sin(x)cos(x)+1-2sin^2(x)=2tg(x)+1\\2sin(x)cos(x)-2sin^2(x)=2tg(x)\\2sin(x)(cos(x)-sin(x))=2tg(x)\\cos(x)-sin(x)=\frac{1}{cos(x)}\\ cos^2(x)-sin(x)cos(x)=1\\2cos^2(x)-2sin(x)cos(x)=2\\2cos^2(x)-1+1-sin(2x)=2\\cos(2x)-sin(2x)=1](https://tex.z-dn.net/?f=sin%282x%29%2Bcos%282x%29%3D2tg%28x%29%2B1%5C%5C2sin%28x%29cos%28x%29%2B1-2sin%5E2%28x%29%3D2tg%28x%29%2B1%5C%5C2sin%28x%29cos%28x%29-2sin%5E2%28x%29%3D2tg%28x%29%5C%5C2sin%28x%29%28cos%28x%29-sin%28x%29%29%3D2tg%28x%29%5C%5Ccos%28x%29-sin%28x%29%3D%5Cfrac%7B1%7D%7Bcos%28x%29%7D%5C%5C%20cos%5E2%28x%29-sin%28x%29cos%28x%29%3D1%5C%5C2cos%5E2%28x%29-2sin%28x%29cos%28x%29%3D2%5C%5C2cos%5E2%28x%29-1%2B1-sin%282x%29%3D2%5C%5Ccos%282x%29-sin%282x%29%3D1)
На данной стадии можно уравнение решить графически, нарисовав график прямой и тригонометрической окружности, в координатах sin(2x) и cos(2x) (см. рисунок) и потом решить 2 уравнения: cos(2x)=1 и sin(2x)=(-1)
Или ввести вспомогательный аргумент, что я и сделаю.
![cos(2x)-sin(2x)=1\\\sqrt{2}(\frac{1}{\sqrt{2}} cos(2x)-\frac{1}{\sqrt{2}}sin(2x))=1\\ sin(\frac{\pi}{4}-2x)=\frac{1}{\sqrt{2}}\\\frac{\pi}{4}-2x_1=\frac{\pi}{4}+2\pi k\\x_1=-\pi k\\\frac{\pi}{4}-2x_2=\frac{3\pi}{4}+2\pi k\\-2x_2=\frac{\pi}{2}+2\pi k\\ x_2=-\pi k-\frac{\pi}{4} cos(2x)-sin(2x)=1\\\sqrt{2}(\frac{1}{\sqrt{2}} cos(2x)-\frac{1}{\sqrt{2}}sin(2x))=1\\ sin(\frac{\pi}{4}-2x)=\frac{1}{\sqrt{2}}\\\frac{\pi}{4}-2x_1=\frac{\pi}{4}+2\pi k\\x_1=-\pi k\\\frac{\pi}{4}-2x_2=\frac{3\pi}{4}+2\pi k\\-2x_2=\frac{\pi}{2}+2\pi k\\ x_2=-\pi k-\frac{\pi}{4}](https://tex.z-dn.net/?f=cos%282x%29-sin%282x%29%3D1%5C%5C%5Csqrt%7B2%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20cos%282x%29-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7Dsin%282x%29%29%3D1%5C%5C%20sin%28%5Cfrac%7B%5Cpi%7D%7B4%7D-2x%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5C%5C%5Cfrac%7B%5Cpi%7D%7B4%7D-2x_1%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%2B2%5Cpi%20k%5C%5Cx_1%3D-%5Cpi%20k%5C%5C%5Cfrac%7B%5Cpi%7D%7B4%7D-2x_2%3D%5Cfrac%7B3%5Cpi%7D%7B4%7D%2B2%5Cpi%20k%5C%5C-2x_2%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%2B2%5Cpi%20k%5C%5C%20x_2%3D-%5Cpi%20k-%5Cfrac%7B%5Cpi%7D%7B4%7D)
--------------------
2)
![4sin^2(x)+3tg^2(x)=1\\4sin^2(x)cos^2(x)+3sin^2(x)=cos^2(x)\\sin^2(2x)=cos^2(x)-sin^2(x)-2sin^2(x)\\sin^2(2x)-cos(2x)=1-2sin^2(x)-1\\1-cos^2(2x)-2cos(2x)=-1\\cos^2(2x)+2cos(2x)-2=0\\cos(2x)=a\\a^2+2a-2=0\\\frac{D}{4}=1+2=3\\ a_1=\sqrt{3}-1\\ a_2=-\sqrt{3}-1 4sin^2(x)+3tg^2(x)=1\\4sin^2(x)cos^2(x)+3sin^2(x)=cos^2(x)\\sin^2(2x)=cos^2(x)-sin^2(x)-2sin^2(x)\\sin^2(2x)-cos(2x)=1-2sin^2(x)-1\\1-cos^2(2x)-2cos(2x)=-1\\cos^2(2x)+2cos(2x)-2=0\\cos(2x)=a\\a^2+2a-2=0\\\frac{D}{4}=1+2=3\\ a_1=\sqrt{3}-1\\ a_2=-\sqrt{3}-1](https://tex.z-dn.net/?f=4sin%5E2%28x%29%2B3tg%5E2%28x%29%3D1%5C%5C4sin%5E2%28x%29cos%5E2%28x%29%2B3sin%5E2%28x%29%3Dcos%5E2%28x%29%5C%5Csin%5E2%282x%29%3Dcos%5E2%28x%29-sin%5E2%28x%29-2sin%5E2%28x%29%5C%5Csin%5E2%282x%29-cos%282x%29%3D1-2sin%5E2%28x%29-1%5C%5C1-cos%5E2%282x%29-2cos%282x%29%3D-1%5C%5Ccos%5E2%282x%29%2B2cos%282x%29-2%3D0%5C%5Ccos%282x%29%3Da%5C%5Ca%5E2%2B2a-2%3D0%5C%5C%5Cfrac%7BD%7D%7B4%7D%3D1%2B2%3D3%5C%5C%20a_1%3D%5Csqrt%7B3%7D-1%5C%5C%20a_2%3D-%5Csqrt%7B3%7D-1)
так как 2 корень меньше -1 он нам не подходит.
![cos(2x)=\sqrt{3}-1\\2x=(+-)arccos(\sqrt{3}-1)+2\pi k\\x=(+-)\frac{1}{2}arccos(\sqrt{3}-1)+\pi k cos(2x)=\sqrt{3}-1\\2x=(+-)arccos(\sqrt{3}-1)+2\pi k\\x=(+-)\frac{1}{2}arccos(\sqrt{3}-1)+\pi k](https://tex.z-dn.net/?f=cos%282x%29%3D%5Csqrt%7B3%7D-1%5C%5C2x%3D%28%2B-%29arccos%28%5Csqrt%7B3%7D-1%29%2B2%5Cpi%20k%5C%5Cx%3D%28%2B-%29%5Cfrac%7B1%7D%7B2%7Darccos%28%5Csqrt%7B3%7D-1%29%2B%5Cpi%20k)
--------------------
3)
![4sin(x)sin(2x)sin(3x)=sin(4x) 4sin(x)sin(2x)sin(3x)=sin(4x)](https://tex.z-dn.net/?f=4sin%28x%29sin%282x%29sin%283x%29%3Dsin%284x%29)
тут сразу напрашивается формула произведение синусов в разность косинусов.
![2sin(x)*(cos(x)-cos(5x))=sin(4x)\\sin(2x)-2sin(x)cos(5x)=sin(4x)\\sin(2x)-sin(4x)=2sin(x)cos(5x)\\sin(2x)-sin(4x)=sin(6x)-sin(4x)\\sin(2x)=sin(6x)\\2x_1=arcsin(sin(6x_1))+2\pi k\\2x_1=6x_1+2\pi k\\x_1=-\frac{pi}{2}k\\2x_2=\pi-6x_2+2\pi k\\8x_2=\pi (1+2k)\\x_2=\frac{\pi}{8}(1+2k) 2sin(x)*(cos(x)-cos(5x))=sin(4x)\\sin(2x)-2sin(x)cos(5x)=sin(4x)\\sin(2x)-sin(4x)=2sin(x)cos(5x)\\sin(2x)-sin(4x)=sin(6x)-sin(4x)\\sin(2x)=sin(6x)\\2x_1=arcsin(sin(6x_1))+2\pi k\\2x_1=6x_1+2\pi k\\x_1=-\frac{pi}{2}k\\2x_2=\pi-6x_2+2\pi k\\8x_2=\pi (1+2k)\\x_2=\frac{\pi}{8}(1+2k)](https://tex.z-dn.net/?f=2sin%28x%29%2A%28cos%28x%29-cos%285x%29%29%3Dsin%284x%29%5C%5Csin%282x%29-2sin%28x%29cos%285x%29%3Dsin%284x%29%5C%5Csin%282x%29-sin%284x%29%3D2sin%28x%29cos%285x%29%5C%5Csin%282x%29-sin%284x%29%3Dsin%286x%29-sin%284x%29%5C%5Csin%282x%29%3Dsin%286x%29%5C%5C2x_1%3Darcsin%28sin%286x_1%29%29%2B2%5Cpi%20k%5C%5C2x_1%3D6x_1%2B2%5Cpi%20k%5C%5Cx_1%3D-%5Cfrac%7Bpi%7D%7B2%7Dk%5C%5C2x_2%3D%5Cpi-6x_2%2B2%5Cpi%20k%5C%5C8x_2%3D%5Cpi%20%281%2B2k%29%5C%5Cx_2%3D%5Cfrac%7B%5Cpi%7D%7B8%7D%281%2B2k%29)
---------------
Ты эти задачи с какой-то олимпиады понабирал?
Если тебе такое дз дали, то не повезло тебе.