Хееееелп, ребята! Помогите с алгеброй пжлст, срочно!

0 голосов
105 просмотров

Хееееелп, ребята! Помогите с алгеброй пжлст, срочно!


image

Алгебра (14 баллов) | 105 просмотров
Дан 1 ответ
0 голосов

A) cos 4x = 0
4x = (p/2) + pk, k принадлежит Z
x = (p/8) + (pk/4), k принадлежит Z
б) sin (x/2 - p/6) +1 = 0
sin (x/2 - p/6) = - 1
x/2 - p/6 = (3p/2) + 2pk, k принадлежит Z
x/2 = (5p/3) + 2pk, k принадлежит Z
x = (10p/3) + 4pk, k принадлежит Z
в) sin (p + t) + cos ((p/2) + t) = корень из 2
- sin t - sin t = корень из 2
- 2sin t = корень из 2
sin t = - (корень из 2)/2
t1 = - (p/4) + 2pk, k принадлежит Z
t2 = (5p/4) + 2pn, n принадлежит Z
г) 2cos^2 x - cos x - 3 = 0
Пусть: cos x = t, t принадлежит [-1;1];
Уравнение: 2t^2 - t - 3 = 0;
D = 1 - 4 • 2 • (-3) = 5^2
t1 = (1 + 5)/(2 • 2) = 6/4 =3/2, 3/2 не принадлежит [-1;1].
t2 = (1 - 5)/(2 • 2) = (-4)/4 = - 1
cos x = - 1
x = p + 2pk, k принадлежит Z
д) (1 + cos x)((корень из 2)sin x - 1) = 0
1 + cos x = 0 или (корень из 2)sin x - 1 = 0
cos x = - 1 или sin x = 1/(корень из 2)
х1 = p + 2pk, k принадлежит Z или х2 = (p/4) + 2pn, n принадлежит Z; x3 = (3p/4) + 2ph, h принадлежит Z
Ответ: а) (p/8) + (pk/4), k принадлежит Z;
б) (10p/3) + 4pk, k принадлежит Z;
в) - (p/4) + 2pk, k принадлежит Z; (5p/4) + 2pn, n принадлежит Z;
г) p + 2pk, k принадлежит Z;
д) p + 2pk, k принадлежит Z; (p/4) + 2pn, n принадлежит Z; (3p/4) + 2ph, h принадлежит Z.

(524 баллов)