Ответ:
x^2 + 14x + 33 = 0
Объяснение:
Первый способ. Если x1 и x2 - корни уравнения, то уравнение имеет вид a(x - x1)(x - x2) = 0, где a - старший коэффициент уравнения
Составляем уравнение:
1*(x - (-3))(x - (-11)) = (x + 3)(x + 11) = x^2 + 3x + 11x +3*11 = x^2 + 14x + 33 = 0
Второй способ. По обратной теореме Виета, которая говорит, что если x1 и x2 корни приведенного квадратного уравнения x^2+p·x+q=0, то справедливы соотношения x1+x2=−p, x1·x2=q, найдём коэффициенты уравнения:
-3 + (-11) = -14 = -p, => p = 14
-3*(-11) = 33 = q
Уравнение: x^2 + 14x + 33 = 0