Ответ:
7,5 ед.
Объяснение:
Решение двумя способами и неважно, какая трапеция, так как координаты вершин нам даны. Можем лишь проверить правильность условия, то есть параллельность сторон ВС и AD и перпендикулярность сторон АВ и ВС. Но это не входит в задание.
1. Найдем длину сторон (модуль) основания трапеции.
|AD| = √((Xd - Xa)² + (Yd-Ya)² = √((-3-(-3))² + (-1-(-4))²) = √9 = 3 ед.
|ВС| = √((Xc - Xb)² + (Yc-Yb)² = √((5-5)² + (8-(-4))²) = √12² = 12 ед.
Средняя линия равна (ВС+AD)/2 = 15/2 = 7,5 ед.
2.Найдем координаты середин боковых сторон трапеции:
АВ/2 = M = ((-3+5)/2;(-4-4)/2) или (1;-4).
CD/2 = N = ((-3+5)/2;(-1+8)/2) или (1;7/2).
Тогда длина средней линии (модуль расстояния между точками середин боковых сторон) равна:
|MN| = √((Xn - Xm)² + (Yn-Ym)² = √((1-1)² + (3,5-(-4))²) = √7,5² = 7,5 ед.