Ответ:π/8 + πk/4; -π/18 + 2πk/3; -5π/18 + 2πk/3, k ∈ Z.
Объяснение:cos2a = cos^2(a) - sin^2(a);
sina - sinb = 2sin((a - b)/2) * cos((a + b)/2);
sin7x + cos^2(2x) = sin^2(2x) + sinx;
sin7x - sinx + cos^2(2x) - sin^2(2x) = 0;
2sin((7x - x)/2) * cos((7x + x)/2) + cos4x = 0;
2sin3x * cos4x + cos4x = 0;
cos4x(2sin3x + 1) = 0;
[cos4x = 0;
[2sin3x + 1 = 0;
[cos4x = 0;
[sin3x = -1/2;
[4x = π/2 + πk, k ∈ Z;
[3x = -π/6 + 2πk; -5π/6 + 2πk, k ∈ Z;
[x = π/8 + πk/4, k ∈ Z;
[x = -π/18 + 2πk/3; -5π/18 + 2πk/3, k ∈ Z.