Ответ: 1 см² .
Стороны 4-х маленьких прямоугольников (они равны между собой) обозначим "а" и "b" . Тогда сторона большого квадрата равна (a+b) .
![\left\{\begin{array}{ccc}a^2+b^2=5^2\\(a+b)^2=49\end{array}\right\; \; \left\{\begin{array}{l}a^2+b^2=25\\a^2+b^2+2ab=49\end{array}\right\; \; \left\{\begin{array}{l}a^2+b^2=25\\25+2ab=49\end{array}\right\\\\\\\left\{\begin{array}{l}a^2+b^2=25\\ab=12\end{array}\right\; \; \left\{\begin{array}{ll}a^2+\frac{144}{a^2}=25\\b=\frac{12}{a}}\end{array}\right\; \; \left\{\begin{array}{l}a^4-25a^2+144=0\\b=\frac{12}{a}\end{array}\right \left\{\begin{array}{ccc}a^2+b^2=5^2\\(a+b)^2=49\end{array}\right\; \; \left\{\begin{array}{l}a^2+b^2=25\\a^2+b^2+2ab=49\end{array}\right\; \; \left\{\begin{array}{l}a^2+b^2=25\\25+2ab=49\end{array}\right\\\\\\\left\{\begin{array}{l}a^2+b^2=25\\ab=12\end{array}\right\; \; \left\{\begin{array}{ll}a^2+\frac{144}{a^2}=25\\b=\frac{12}{a}}\end{array}\right\; \; \left\{\begin{array}{l}a^4-25a^2+144=0\\b=\frac{12}{a}\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Da%5E2%2Bb%5E2%3D5%5E2%5C%5C%28a%2Bb%29%5E2%3D49%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da%5E2%2Bb%5E2%3D25%5C%5Ca%5E2%2Bb%5E2%2B2ab%3D49%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da%5E2%2Bb%5E2%3D25%5C%5C25%2B2ab%3D49%5Cend%7Barray%7D%5Cright%5C%5C%5C%5C%5C%5C%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da%5E2%2Bb%5E2%3D25%5C%5Cab%3D12%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bll%7Da%5E2%2B%5Cfrac%7B144%7D%7Ba%5E2%7D%3D25%5C%5Cb%3D%5Cfrac%7B12%7D%7Ba%7D%7D%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da%5E4-25a%5E2%2B144%3D0%5C%5Cb%3D%5Cfrac%7B12%7D%7Ba%7D%5Cend%7Barray%7D%5Cright)
![a^4-25a^2+144=0\; \; ,\; \; t=a^2\geq 0\; \; ,\; \; t^2-25t+144=0\\\\t_1=9\; ,\; \; t_2=16\\\\a^2=9\; \; ,\; \; a=\pm 3\\\\a^2=16\; \; ,\; \; a=\pm 4 a^4-25a^2+144=0\; \; ,\; \; t=a^2\geq 0\; \; ,\; \; t^2-25t+144=0\\\\t_1=9\; ,\; \; t_2=16\\\\a^2=9\; \; ,\; \; a=\pm 3\\\\a^2=16\; \; ,\; \; a=\pm 4](https://tex.z-dn.net/?f=a%5E4-25a%5E2%2B144%3D0%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20t%3Da%5E2%5Cgeq%200%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20t%5E2-25t%2B144%3D0%5C%5C%5C%5Ct_1%3D9%5C%3B%20%2C%5C%3B%20%5C%3B%20t_2%3D16%5C%5C%5C%5Ca%5E2%3D9%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20a%3D%5Cpm%203%5C%5C%5C%5Ca%5E2%3D16%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20a%3D%5Cpm%204)
Так как а>0 и b>0 , то а=3 или а=4 ⇒ b=4 или b=3 .
Площадь маленького квадрата равна площади большого квадрата минус 4 площади маленьких прямоугольников.
![S=49-4\cdot (4\cdot 3)=49-48=1 S=49-4\cdot (4\cdot 3)=49-48=1](https://tex.z-dn.net/?f=S%3D49-4%5Ccdot%20%284%5Ccdot%203%29%3D49-48%3D1)