Ответ:
Объяснение:Среди 25 участников, из которых 10 девушек, разыгрывают 5 билетов на шоу. Сколько существует способов выигрыша этих билетов 2 девушками и 3 юношами? Решение: 1)Всего юношей будет 25-10=15 (юн) и 10 (дев); 2) С₁₀² = 10!/ (10-2)!2! = 10!/ (8!·2!) = 9·10 / 2= 90/2=45 (спос) выбрать девушку; 3) С₁₅³= 15!/(15-3)!·3! = 15!/ (12!·3!) = 13·14·15/ (1·2·3)= 13·35= 455 4) 45*455= 20475 (способов) №2 Найдём количество чисел, которые заканчиваются на 2.
Первую цифру числа мы можем выбрать 4-мя способами (3,4,5,9), вторую 3-мя способами, так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается 2 способа и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:
4·3·2·1=24 Найдём количество чисел, которые заканчиваются на 4:.
Первую цифру числа мы можем выбрать 4-мя способами (2,3,5,9), вторую 3-мя способами, так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается 2 способа и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:
4·3·2·1=24 Сложим результаты, получим 24+24=48