В уравнении знак * замените числом, чтобы получилось уравнение окружности

0 голосов
28 просмотров

В уравнении знак * замените числом, чтобы получилось уравнение окружности


image

Алгебра (351 баллов) | 28 просмотров
Дан 1 ответ
0 голосов

Смысл такой, что надо выделять полные квадраты.

a)\ x^2+y^2+2x+2y = x^2+2x+1+y^2+2y+1-2=\\= (x+1)^2+(y+1)^2-2=* \Rightarrow (x+1)^2+(y+1)^2=(*+2) \Rightarrow \\ \Rightarrow (x+1)^2+(y+1)^2 = (\sqrt{*+2})^2

По факту, чтобы была окружность (если точку не считать окружностью), то тогда подкоренное выражение должно быть положительно, просто радиус разный будет, поэтому image -2}" alt="\boxed{* > -2}" align="absmiddle" class="latex-formula">

image-13}" alt="b)\ x^2+y^2-10x+12=x^2-2\cdot x \cdot 5+5^2+y^2-13=\\=(x-5)^2+y^2-13=* \Rightarrow (x-5)^2+y^2=(\sqrt{*+13})^2 \Rightarrow \boxed{*>-13}" align="absmiddle" class="latex-formula">

image30.75}" alt="\displaystyle c) \ x^2+y^2-x+6y+40=x^2-2\cdot x\cdot \frac{1}{2} +\frac{1}{4} +y^2+2\cdot y\cdot 3+\\9+\bigg(40-9-\frac{1}{4}\bigg)=\bigg(x- \frac{1}{2}\bigg)^2+(y+3)^2 +30.75=* \Rightarrow \\ \Rightarrow (x-0.5)^2+(y+3)^2=(\sqrt{*-30.75})^2 \Rightarrow \boxed{*>30.75}" align="absmiddle" class="latex-formula">

image-16}" alt="d) \ x^2+y^2-8y=x^2+y^2-2\cdot y\cdot 4+16-16=\\=x^2+(y-4)^2-16=* \Rightarrow x^2+(y-4)^2=(\sqrt{*+16})^2 \Rightarrow \boxed{*>-16}" align="absmiddle" class="latex-formula">

P.S. возможно, я, конечно, как-то не так понял задание, но по факту задание составляет найти для * все значения, которые сделают окружность радиусом не 0 (0 - точка), так как вариация числа как раз и задаст радиус.

(5.0k баллов)
0

Благодарю.