При каких значениях параметра уравнение имеет 1 корень СРОЧНО 40 БАЛЛОВ (в закрепе)

0 голосов
45 просмотров

При каких значениях параметра уравнение имеет 1 корень СРОЧНО 40 БАЛЛОВ (в закрепе)


image

Алгебра (21 баллов) | 45 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

znanija.com/task/36687964

При каких значениях параметра уравнение (x²-(4a-3)x -12a ) / (x²-1) =0 имеет 1 корень .

Решение  :       (x² - (4a - 3)x - 12a ) / (x² - 1 ) = 0  ⇔  

{ x²-(4a-3)x -12a = 0 ;

{x² - 1  ≠  0 . || ОДЗ ||

x²- 1≠ 0⇔x ≠ ± 1  * * * (x+1)(x-1) ≠0⇔ x+1≠0 и x-1 ≠0 ⇔ x ≠ -1 и x ≠ 1 * * *

x² - (4a - 3)x - 12a = 0      

- - -

Если  a =0    * * *  - 12a = 0  * * *

x²-(4a-3)x-12a =0 ⇔x² +3x=0⇔(x+3)x=0⇒x₁ = -3,x₂= 0  два корня

- - -

D=(4a-3)²- 4*1*(-12a) =16a²-24a +9-4*1*(-24a)=16a²+24a+9 = (4a+3)² ≥0

Если  D = 0 ⇔ 4a+3=0⇔ a = - 3/4   x₁=x₂=(4a-3)/2 = - 3 ( кратный корень)

По  уставу   ЕГЭ  _ одно решение    

звучит так: Квадратное уравнение имеет ОДИН корень, если D=0

* * * a = - 3/4 ⇒x²- (4a-3)x -12a =0 ⇔ x²+6x+9 =0 ⇔(x+3)² = 0 ⇒x = -3 * * *

x₁,₂ = (4a-3 ±(4a+3) ) /2 ;

x₁ =(4a-3- 4a- 3) /2 = -3 ;  ясно  x₁ = -3 решение ( ∈ ОДЗ )

* * * уже обеспечен один корень * * *

x₂=(4a-3 +4a+3)/2 = 4a

Для того чтобы уравнение имел только один корень x₂=4a не должно  быть корнем ,  т.е.  4a = - 1  или 4a = 1 .       a = - 1/4  или   a = 1 /4

* * *  [   4a = - 1  ;  4a = 1 . ( совокупность уравнений )  * * *

Ответ:   - 3/4  -1/4 ;  1/4 .                  * * * -0,75 ; - 0,25 ;0,25  * * *

* * * P.S. Квадратное уравнение ax²+bx+c =0 ⇔a(x+b/2a)²- D/4a =0 ;a≠0 .

если D = 0 , то  ( x+b/2a)² = 0 ⇒ x₁ = x₂= - b/2a_двукратный корень  * * *

(181k баллов)
0 голосов

Итак, есть уравнение

\displaystyle \frac{x^2-(4a-3)x-12a}{x^2-1}=0

Сразу накладываем ограничение на знаменатель: x^2-1\neq 0 \Rightarrow x\neq \pm1

Ситуация, когда у заданного в условии уравнения всего 1 корень, это когда D=0 у числителя, и этот корень не равен ни одному из двух значений из нулей знаменателя или же когда image0" alt="D>0" align="absmiddle" class="latex-formula">, но один из корней (именно один) равен одному из двух значений из нулей знаменателя дроби, тогда это значение корнем уравнения являться не будет и благополучно останется другой корень.

Решим уравнение x^2-(4a-3)x-12a=0

Это квадратное уравнение, и что-то мне подсказывает, что дискриминант в нем будет полным квадратом.

D=(-(4a-3))^2-4\cdot 1\cdot (-12a)=16a^2-24a+9+48a = \\= 16a^2+24a+9 = (4a)^2+2\cdot 4a\cdot 3 +3^2 = (4a+3)^2

Впрочем, неудивительно. Для решения квадратного уравнения берется корень, здесь корень из квадрата, да, формально это модуль, но именно при решении квадратных уравнений модуль можно опустить, потому что при объединении всех решений с раскрытия модуля как раз все нормально получается, поэтому его сразу опустим.

\displaystyle x=\frac{4a-3\pm(4a+3)}{2} \Rightarrow x_1=-3; x_2= 4a

Вообще прекрасно, один корень это число, причем которое не входит в нули знаменателя. Ситуация, когда -3 - единственный корень будет при D=0 = (4a+3)^2 \Rightarrow a=-\dfrac{3}{4}

Осталось проверить, когда x_2=4a=\pm 1\Rightarrow a=\pm \dfrac{1}{4}

Теперь запишем ответ, как требуется, по возрастанию десятичные числа через пробел.

Ответ: -0.75 -0.25 0.25

(5.0k баллов)