Найдите стороны равнобедренного треугольника, если его боковая сторона в 2 раза больше...

0 голосов
50 просмотров

Найдите стороны равнобедренного треугольника, если его боковая сторона в 2 раза больше основания, а его периметр равен 6,5 см


Геометрия (24 баллов) | 50 просмотров
Дано ответов: 2
0 голосов

Дано:

∆АВС - равнобедренный.

АВ > в 2 раза, чем АС.

Р = 6,5 см.

Найти:

АВ; ВС; АС.

Решение.

∆АВС - равнобедренный => АВ = ВС.

Пусть х см - АС, тогда 2х - АВ, ВС.

Периметр 6,5

Р = а + b + c

1.Составление математической модели.

х + 2х + 2х = 6,5

2.Работа с математической моделью.

5х = 6,5

х = 1,3

1,3 см - АС

АВ = ВС = 1,3 × 2 = 2,6 см.

3.Ответ: 2,6 см; 2,6 см; 1,3 см.

(22.4k баллов)
0 голосов

Ответ:

Пусть x - основание, тогда боковая сторона 2x

Периметр треугольника=a+b+c

X+2x+2x=6,5

5x=6,5

x=1,3, значит, основание =1,3 см, тогда боковые стороны =1,3*2=2,6

1,3+2,6+2,6=6,5

Ответ: 1,3; 2,6; 2,6

(771 баллов)