Ответ:
![\frac{\pi}{2} + n\pi,\; n\in Z \frac{\pi}{2} + n\pi,\; n\in Z](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B2%7D%20%20%2B%20n%5Cpi%2C%5C%3B%20n%5Cin%20Z)
Объяснение:
ОДЗ:
![\sin(x) \ne 0 \\ x\ne n\pi,\; n\in Z \sin(x) \ne 0 \\ x\ne n\pi,\; n\in Z](https://tex.z-dn.net/?f=%20%5Csin%28x%29%20%5Cne%200%20%5C%5C%20x%5Cne%20n%5Cpi%2C%5C%3B%20n%5Cin%20Z)
Решение:
\\ x = \frac{\pi}{2} + n\pi,\; n\in Z" alt=" \cot(x) = \cos(x) \\ \frac{ \cos(x) }{ \sin(x) } = \cos(x) \\ \cos(x) \sin(x) - \cos(x) = 0 \\ \cos(x) ( \sin(x) - 1) = 0 \\ \\ \cos(x) = 0 \\ x = \frac{\pi}{2} + n\pi,\; n\in Z \\ \\ \sin(x) - 1 = 0 \\ \sin(x) = 1 \\ x = \frac{\pi}{2} + 2n\pi,\; n\in Z \\ \\ = > \\ x = \frac{\pi}{2} + n\pi,\; n\in Z" align="absmiddle" class="latex-formula">
С учётом ОДЗ:
![x = \frac{\pi}{2} + n\pi,\; n\in Z x = \frac{\pi}{2} + n\pi,\; n\in Z](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%20%2B%20n%5Cpi%2C%5C%3B%20n%5Cin%20Z)