Ответ:
Объяснение:
(x²-25)/(x+3) * 1/(x²+5x) - (x²+10x+25)/(x³-6x²+9x) : (x+5)/(x-3) + 4/(x-3)=
=(x+5)(x-5) /(x+3) * 1/x(x+5) - (x+5)²/(x(x²-6x+9) * (x-3)/(x+5) + 4/(x-3)=
=(x-5)/x(x+3) - (x+5)(x-3)/x(x-3)² +4/(x-3)=
=(x-5/x(x+3) -(x+5)/x(x-3) + 4/(x-3)=
=[(x-5)(x-3) - (x+5)(x+3) + 4x(x+3) ] /x(x²-9)=
=(-16x + 4x²+12x)/x(x²-9) = 4x(x²-4x+3) / x(x²-9)=
=4x((x-1)(x-3) / x(x²-9)=4(x-3)/(x+3)