В трапеции ABCD (ВC || AD) ВС = 9 см, AD = 16 см. Найдите длину средней линии.

+462 голосов
2.8m просмотров

В трапеции ABCD (ВC || AD) ВС = 9 см, AD = 16 см. Найдите длину средней линии.


Геометрия (19 баллов) | 2.8m просмотров
Дан 1 ответ
+98 голосов

Ответ:

Объяснение:

Треугольники АOД и ВOС - подобные (уг.ВOС = уг.АOД как вертикальные; уг.СВO = уг.АДO как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).

Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1

Площадь тр-ка АОД равна S2 = 0,5АД·Н2

При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²

S1 : S2 = 0,5ВС·Н1  : 0,5АД·Н2

к² = к· ВС: АД

к = 9/16

Итак, нашли коэффициент подобия.

Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и

ОВ: (АС - ОВ) = 9/16

16·ОВ = 9·(АС - ОВ)

16·ОВ = 9·АС - 9·ОВ

25·ОВ = 9·АС

ОВ = 9·АС/25 = 9·18:25 = 6,48

Ответ: ОВ = 6,48см

(970 баллов)